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1. INTRODUCTION

Robbins and Gough (1978, 1979) investigated the sensitivity of the amplitude of the ignition induced

pressure wave in a 5-in, 54-cal gun to the changes in the values of the friction factor f,. Nominal values

of friction factor of 0.875, 1.75, and 3.5 were chosen for study. It was shown that a doubling of the

friction factor has a strong effect on the smoothness of the pressure history. Large differences between

breech and bore pressure for these three values of friction factor were calculated (e.g., the peak pressure

difference observed for 3.5 was about 70% higher than for 1.75). Thus, the value of the friction factor

used will have an important effect on the accuracy of the prediction of the interior ballistic flow.

In the following, a re-examination of the data which is the basis of one of the currently used bed drag

correlation models is given. It is shown that, by minimizing the root-mean-square error (RMSE) between

the data points and the proposed functional relationship, the accuracy in the prediction of the coefficient

of drag of propellant beds can be improved.

2. ANALYSIS

Ergun (1952), Kuo and Nydegger (1978), and Jones and Krier (1983) have proposed models relating

coefficient of drag and Reynolds number for gas flow through packed beds over the ranges illustrated in

Figure 1. Following Jones and Krier, the relation between friction factor and coefficient of drag may be

represented as is = Fv[(I - *)/Re], where 0 is the porosity of the packed bed, F, the coefficient of

drag, and Re the Reynolds number of the gas flow based on particle size, with particle size much less than

tube diameter.

In making the transition from the straight-line relation proposed by Ergun,

FV = 1 50o+1. 7 5 (ReJ (1)

to that of Kuo and Nydeý,ger,

FV = 276.23 + 5.05 (Re .87 (2)
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Figure 1. Proposed Models for Relating Coefficient of Drag and Reynolds Number.

a slight change in notation initiates substantial complications. Equation I is a simple linear model.

Equation 2 is nonlinear. Nonlinearity complicates the statistical analysis of the data since determining

appropriate choices for the parameters in Equation 2 becomes a computationally intensive optimization

problem, and statistical inference about the resultant relation and the fitted parameters becomes much more

tentative. The mathematical underpinnings of nonlinear regression will not support as much in the way

of statistical inference or hypothesis testing as is available for linear regression. In general, nonlinear

models (models in which one or more parameters appear nonlinearly) should be avoided unless there is

a compelling reason for their use. Draper and Smith (1981) discuss this issue in some detail.

With the exception of data collected for 6-mm diameter beads, which are deferred to the Kuo and

Nydegger model, Jones and Krier (1983) advance as a model relating coefficient of drag and Reynolds

number,

F - 150 + 3.89 _. . (3)
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Standard regression procedures used to model experimental data are developed under several assumptions.

Fundamental among them is that the response (here Fv) is measured with error but the predictors (here,

Re and ý) ar measured without error. Jones and Krier provide estimates of error in Fv, Re, and 0,

indicating that this assumption is not met. In practice, this situation is often circumvented by arguing that

the error in predictor measurement is small compared to the range of the predictor variables. This would

appear to be the case here, but reliance on any resultant representation should be approached with caution.

This model was constructed for Reynolds numbers in excess of 103, and for a larger variety of testing

medium (Db) than heretofore considered. Residual plots of Equation 3 for the Jones (1980) data

are shown in Figures 2 and 3. Residuals =re defined as the differences Fv, - Pvi i = 1, 2, ..., n, where
Fvi is an experimentally determined value of drag coefficient, and fvi is the corresponding value

predicted by the regression equation. These plots are useful for assessing the adequacy of a fitted

regression model and also serve as a diagnostic tool.

Figure 2 strongly suggests that another regression assumption may not be satisfied: The variance of

the residuals does not appear constant over the range of Re' = Re Weighted least squares or a
1-€

transformation on the observations F,, before regression are possible corrective procedures for this

residual pattern. Figure 3 reaffirms the heterogeneity of variance concern, and shows, moreover, that the

departure from the fitted equation is systematic with bead diameter Db. The regression equation

underestimates entire classes of measurements corresponding to Db = 1.5, 3, 6 mm, and overestimates for

Db = 2 mm for measurements in a tube of 50.8 mm in diameter.

While nonlinear regression normally seeks to minimize the sum of the squared residuals, just as in

ordinary Ninear regression, the computational procedures are iterative and may diverge or converge to local

extrema. Furthermore, these procedures may be sensitive to specified initial conditions. Following a

systematic selection of initial conditions, we determined that the equation

FV M 61 + 2.7 ('Re0'

provides an improved representation of the data modeled by Jones and Krier. The RMSE (an estimate

of the standard deviation of the residuals and a commonly used measure for adequacy of fit) is 1,727,

3
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compared to 2,144 for Jones and Krier's Equation 3; a reduction of 20%. If the data corresponding to

Db = 6 (chief contributor to the heterogeneity of variance condition) is included in the regression, then

the relation Fv a 2,750 + 0.272 (Re/i - )1.12 provides a two-thirds reduction in RMSE over that of

Equation 3. The residual plot corresponding to Equation 4, shown in Figure 4, is improved, but the

undesirable pattern of under(over) fitting classes of bead diameter still persists.
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Figure 4. Residuals vs. Bead Size Corresponding to Equation 4.

The iterative procedure used to determine Equation 4 was a Gauss-Newton method with stephalving.

This procedure, along with the Newton-Raphson method (which may be appropriate when the residuals

are quite large) are commonly available as part of the nonlinear regression platform of current statistical

software packages (e.g., JMP Version 2.0 Software, 1989).

An approximate confidence interval for the exponent of Re' in Equation 4 was determined using

procedures detailed in Bates and Watts (1988) or Ratkowski (1990). A 95% confidence interval for the

fitted exponent 0.91 is the interval [.84, .98]. Since this interval fails to cover unity, a straight-line

relation like Ergun's for higher Reynolds numbers is not supported by these data.
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Transforming the variables (Re', Fv) by taking logarithms, as suggested by the residual plot in

Figure 3, effectively linearizes the data. This was pointed out previously by Jones and Krier. In

regression analysis, a measure of precision of the regression line which is often used in addition to RMSE

is given by a statistic denoted as R2. The value taken on by R2 in the unit interval [0, 1] quantifies the

amount of variation in the response Fv accounted for by the regression line. Values close to one are

highly desirable, indicating that the regression has effectively accounted for the variation in the response.

The regression line determined after transformation of these data has an R2 value, R2 = 0.98. Comparison

between linear models and nonlinear models is difficult. RMSE values cannot be compared across the

transformation, and a well defined R2 statistic for nonlinear models does not exist.

If an expression Fv = o + P I (Re/I - ý ) 5 2 is the model of choice for relating Reynolds number

and coefficient of drag for Reynolds number in excess of 103, then Equation 4 would seem to be a strong

candidate. Actually, none of tne models considered captures the strong partitioning of the data according

to bead diameter. Ar attempt to accommodate all the bead diameters using a single equation might be

accomplished through the inroduction of dummy variables (Draper and Smith 1981) to reflect the

underlying physics, but only at the expense of considerable complication in the expression relating

Reynolds number to coefficient of drag. Such an elaboration would not likely gain acceptance by the

researcher.

3. RESULTS

An appreciation of the significance of the new relationship (Equation 4) may be gained by calculating

the coefficient of drag at Reynolds number encountered in a typical interior ballistic simulation and

comparing it with the value obtained from the Jones-Krier model (Equation 3). At 0 = 0.40 and Reynolds

number = 1.5 x 105, this formulation gives Fv = 1.934 x 105, while the suggested Equation 4 gives a

value of 2.206 x 105 (or ý.s = 0.882), a 14% increase. As the Reynolds number increases, the difference

becomes larger. We note, in Figure 5, that the new, statistically improved Equation 4 gives a consistently

larger value of the drag coefficient than Equation 3.

6
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Figure 5. Drai Coefficient vs. Reynolds Number/(1 - 4).

4. CONCLUSIONS

Keeping in mind the observation of Robbins and Gough (1978) about the sensitivity of the pressure

smoothness and history to the friction factor, the difference in the calculated coefficient of drag from the

two relationships (Equations 3 and 4) is judged to be significant. Significant, since consistent with current

practice, these relationships are used to calculate the drag within the propellant bed. Indeed, it would be

desirable to re-examine the functional form of the other popularly used coefficients of drag to see the

difference in predicted values when the RMSEs are minimized.

G. E. P. Box, an influential contemporary statistician, has remarked that "No model is correct, but

some are useful." It is in this spirit that we offer these remarks, along with the hope for an incremental

move toward a more useful model.

7
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REDUCED DATA FOR STEADY STATE EXPERIMENT

POROSITY = .4304 BEAD = 6.0 TEST DIA = 2.00

DEL P PLENUM TEMP DENSITY U AVG MASS RE FV

68.200 225.000 19.000 .852 119.319 .954 70843.5 145395.3
68.200 225.000 19.000 .852 119.319 .954 70843.5 145395.3
61.010 200.000 16.000 .772 118.355 .858 63678.1 131576.9
47.060 150.000 14.000 .602 116.335 .658 48835.0 103254.6
32.310 100.000 11.000 .422 113.733 .450 33426.2 72512.9
17.500 50.000 11.000 .241 102.782 .233 17264.2 43459.7
8.900 25.000 11.000 .153 97.892 .141 10458.3 23206.6

RP/M*M DB*RE/L*M*M K*DB*RE/L*M*M

6310970.6 375629.0 122576.4
6310970.6 375629.0 122576.4
5706196.5 339632.8 110830.0
4498126.7 267728.5 87366.0
3187631.4 189727.8 61912.6
2015896.9 119988.2 39154.3
1346257.4 80129.2 26148.0

RE ERGUN'S FV KUO'S FV FV CAL ACTUAL FV

70843.5 217804.7 136956.7 105434.5 145895.3
70843.5 217804.7 136956.7 105434.5 145895.3
63678.1 195790.2 124847.2 96106.8 131578.9
48835.0 150187.4 99163.9 76322.8 103254.8
33426.2 102846.3 71381.4 54922.1 72512.9
17264.2 53191.4 40294.9 50976.3 43459.7
10458.3 32281.4 26151.1 20081.3 23208.8

LINE FIT TO DATA YIELDS FV = 4345.733+ 1.951RE/(1-POR)

13



REDUCED DATA FOR STEADY STATE EXPERIMENT

POROSITY = .3863 BEAD = 4.0 TEST DIA = 2.00

DEL P PLENUM TEMP DENSITY U AVG MASS RE FV

102.300 300.000 26.000 1.075 107.583 .975 47871.8 73657.4
85.780 250.000 22.000 .915 108.075 .818 40177.1 62840.8
69.700 200.000 19.000 .763 104.028 .660 32426.3 51900.0
53.550 150.000 18.000 .582 102.748 .504 24756.3 40370.9
36.750 100.000 16.000 .405 100.793 .344 16907.9 28243.0
20.000 50.000 15.000 .236 94.434 .188 9214.7 16405.4
10.400 25.000 15.000 .151 83.702 .107 5244.7 9624.8

RE/M*M DB*RE.L*M*M K*DB*REXL*M*M

5371437.3 211419.8 71343.6
4575164.4 180078.5 60767.4
3800274.2 149578.8 50475.3
2963894.6 116858.9 39366.5
2089123.4 82227.9 27747.8
1292569.0 50875.5 17167.9
936445.1 36858.5 12437.9

RE ERGUN'S FV KUO'S FV FV CAL ACTUAL FV

47871.6 136o58.4 91359.2 70310.9 73657.4
40177.1 114717.4 78480.6 60390.6 62640.8
32426.3 92815.4 65177.1 50142.9 51900.0
24756.3 70744.0 51595.0 39680.7 40370.9
16907.9 46364.0 37106.8 28520.5 28243.0
9214.7 26426.2 21996.8 16881.1 18405.4
5244.7 15105.8 13578.5 10396.7 9624.6

LINE FIT TO DATA YIELDS FV = 2514.204+ 1.481RE/(1-POR)
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REDUCED DATA FOR STEADY STATE EXPERIMENT

POROSITY = .3954 BEAD = 3.0 TEST DIA = 2.00

DEL P PLENUM TEMP DENSITY U AVG MASS RE FV

98.800 300.000 19.000 1.107 86.879 .830 30554.0 53487.2
84.120 250.000 18.000 .946 85.139 .695 25587.4 46470.7
67.500 200.000 16.000 .768 84.337 .557 20518.1 37843.8
51.750 150.000 14.000 .594 82.588 .423 15573.6 29471.2
35.630 100.000 13.000 .413 80.875 .286 10602.1 20720.9
19.300 50.000 13.000 .237 75.384 .154 5681.0 12044.8
9.800 25.000 13.000 .149 66.032 .085 3134.8 6980.3

RE/M*M DB*RE/L*M*M K*DB*RF/L*M*M

5134026.4 151558.5 50717.7
4461711.8 131709.7 44076.1
3621070.9 106894.0 35771.6
2846233.5 84020.8 28117.2
2013574.2 59440.7 19891.6
1242514.3 36679.0 12274.5
893059.2 26383.1 8822.3

RE ERGUN'S FV KUO'S FV FV CAL ACTUAL FV

30554.0 88587.9 62710.8 48243.0 53487.2
25587.4 74212.2 53781.8 41385.0 46470.7
20518.1 59539.2 44430.8 34182.0 37843.8
15573.6 45227.3 35013.2 26907.8 29471.2
10602.1 30837.4 25136.4 19299.7 20720.9
5681.0 16593.6 14722.9 11278.2 12044.8
3134.6 9223.2 8888.1 6783.7 68980.3

LINE FIT TO DATA YIELDS FV = 2204.642+ 1.651RF(I-POR)
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REDUCED DATA FOR STEADY STATE EXPERIMENT

POROSITY =.3724 BEAD = 2.0 TEST DIA = 2.00

DEL P PLENUM TEMP DENSITY U AVG MASS RE FV

109.100 300.000 21.000 1.061 78.083 .873 16523.2 24050.2

91.830 250.000 19.000 .900 77.178 .564 13858.5 20475.8

74.410 200.000 18.000 .735 75.786 .452 11108.8 16695.9

56.700 150.000 17.000 .567 74.254 .342 8392.4 13140.3
39.070 100.000 16.000 .398 71.853 .232 5704.9 9357.0

20.900 50.000 16.000 .230 79.010 .148 3629.8 4552.0

10.100 25.000 15.000 .145 81.395 .072 1777.7 2830.8

RE/M*M DB*RE/L*M*M K*DB*RFIL*M*M

3462429.5 66140.6 23324.0
2950954.4 58074.8 19878.6
2444145.0 48100.8 16484.5
1917254.4 37731.8 12915.2
1387045.3 27297.1 9343.6
729852.5 14363.5 4916.5
589968.8 11810.8 3974.2

RE ERGUN'S FV KUO'S FV FV CAL ACTUAL FV

16523.2 46223.2 35679.9 27421.3 24050.2
13858.5 38792.9 30857.0 23552.2 20475.8
11108.8 31119.8 25335.1 19452.8 16895.9

8392.4 23551.3 19913.8 15276.7 13140.3
5704.9 16057.8 14312.2 10961.9 9357.0

3629.8 10270.9 9747.0 7445.3 4552.0
1777.7 5107.0 5365.9 4070.6 2830.9

LINE FIT TO DATA YIELDS FV = 1101.441+ 1.354RE/(I-POR)
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REDUCED DATA FOR STEADY STATE EXPERIMENT

POROSITY = .3900 BEAD = 1.5 TEST DIA = 2.00

DEL P PLENUM TEMP DENSITY U AVG MASS RE FV

107.800 300.000 12.000 1.121 59.460 .567 10444.8 20374.0
90.690 250.000 11.000 .950 58.593 .474 8721.3 17393.6
73.200 200.000 9.000 .772 57.365 .377 6937.9 14339.7
56.250 150.000 8.000 .598 55.702 .283 5219.4 11348.3
36.680 100.000 8.000 .416 54.423 .193 3545.4 7982.8
20.300 50.000 8.000 .237 48.717 .098 18(l,.9 4682.7
10.200 25.000 8.000 .151 42.972 .055 1017.8 2667.4

RE/M*M DB*RE/L*M*M K*DB*RE/L*M*M

3657128.2 53979.2 18151.9
3133575.5 46251.6 - 553.3
2582378.4 38115.9 12817.5
2053178.4 30304.9 10190.8
1460965.9 21563.9 7251.4
929718.5 132ý2.6 4614.5
672742.8 9- ý9.7 3339.1

RE ERGUN'S FV KUO'S FV FV CAL ACTUAL FV

14, 30114.7 24626.2 18908.7 20374.0
8721 " -'170.0 21090.4 16183.1 17393.6
& 20053.8 17334.0 13289.6 14339.7
521 4 15123.6 13592.4 10407.4 11348.3
3545.4 10321.1 9787.9 7476.8 7982.8
1807.9 5336.6 5570.3 4228.0 4662.7
1017.8 3070.0 3487.9 2623.9 2667.4

LINE FIT TO DATA YIELDS FV = 1195.945+ 1.774RE/(1-POR)
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REDUCED DATA FOR STEADY STATE EXPERIMENT

POROSITY = .3804 BEAD = .9 TEST DIA 2.00

DEL P PLENUM TEMP DENSITY U AVG MASS RE FV

110.700 300.000 21.000 1.100 48.457 .442 5199.9 9642.4
92.260 250.000 21.000 .917 47.529 363 4259.9 8177.7
74.290 200.000 21.000 .741 48.955 .289 3391.2 6678.0
57.440 150.000 19.000 .576 45.000 .215 2529.7 5387.6
39.560 100.000 19.000 .401 42.882 .143 1618.2 3893.9
21.500 50.000 18.000 .234 36.574 .071 833.7 2481.2
11.400 25.000 17.000 .152 29.824 .038 440.7 1613.4

RE/M*M DB*REAL*M*M K*DB*RE/L*M*M

2827830.1 26636.2 9041.5
2397905.3 22588.3 7666.9
1964152.7 18502.3 6280.1
1584390.2 14925.0 5065.8
1157494.8 10903.8 3700.9
787762.2 7420.7 2518.7
624080.1 5878.8 1995.4

RE ERGUN'S FV KUO'S FV FV CAL ACTUAL FV

5199.9 14838.5 13370.1 10238.1 9642.4
4259.9 12181.8 11284.7 8629.8 8177.7
3391.2 9728.2 9303.8 7103.8 6678.0
2529.7 7295.0 7271.9 5538.7 5387.8
1678.2 4889.9 5171.4 3920.7 3893.9
833.7 2504.7 2939.6 2201.6 2481.2
440.7 1394.7 1805.7 1328.2 1613.4

LINE FIT TO DATA YIELDS FV = 759.821+ 1.621RE/(I-POR)
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LIST OF SYMBOLS

Db = particle diameter

fs = friction factor

F, = coefficient of drag

Fvi = ith observed value of the drag coefficient

Fv, i = predicted drag coefficient corresponding to the ith observed value

Re = Reynolds number based on particle size

Re' = Reynolds number divided by 1-4

00o = model coefficient

0 1  = model coefficient

P2  = model exponent

* = porosity of the packed bed
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